<-CHM151 Home Page <-CHM151 Progress Page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dimensional Analysis is a powerful way to solve problems. The power comes from the simplicity of the approach. It avoids memorization and only requires some observation of where you start and where you want to end up. As a CHM151 student, you need become very good at this kind of calculating. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 1: |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
How many inches in 2 miles? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 ÷ 1 = 1 x 36 36 1 |
Notice that here the conversion is 1 inch per 1/36 yard because those are equal lengths. Remember when dividing by a fraction, you can invert and multiply. So dividing by 1/36 is the same as multiplying by 36. So when using the calculator, you can multiply 2 x 1760 x 36 to get 126,720 inches. Or you can turn 1/36 into a decimal fraction and divide that into 2 x 1760. Problem 3: What is the decimal fraction for 1/36 rounded to 5 significant figures? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Mass to volume: Let's say you want to know the volume of the iron in a car that gets crushed and melted down. There's 3,000. lbs of iron in a car and iron's density is 7.874 g/cc. You calculate the volume as 173,200 cc using iron's density (see spreadsheet layout below). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
It's a sad fact but the United States is about the last country not to convert completely to metrics. This always adds some extra conversions in chemistry. For example, in a brewery (see below), the recipe calls for a concentration of malt of 2.5 grams malt per 100mL of brew. The bags of malt come in 25 lb bags. The vat holds 1,000. gallons of brew. (equalities: 1 gallon=3785 milliliters, 1 lb=454g) Note the dimensional analysis below. It begins with the concentration, which is mass per volume. That it multiplied by the volume of the vat. Normally, that is all that is needed to find mass because the volume cancels. However, that only works if volumes have the same units and the mass is the unit you want. Unfortunately, our units for volume don't match (mL vs. gallons). Also grams is not the weight we want. We want the weight in the number of 25 pound bags. See below dimensional analsysis that shows how to solve this. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 5a) According the dimensional analysis setup above, what units cancel out? Problem 5b) What units remain? Problem 5c) How many 25-lb bags are needed (round to nearest bag) (L2)? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Let's do another problem that is almost the same but this time you will plug in the conversions. I saw one recipe that makes 9.0 gallons of beer and calls for 3.0 pounds of honey. So the honey concentration is 3.0 lb per 9.0 gallons. However, we are still using the 1,000. gallon vat. In the brewery you don't want to measure the honey in pounds. It's easier if the workers just measure it out in liters. Remember, going from weight to volume is always done by knowing density. The density of honey is 1.36 g/mL. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Number of visitors (not hits) since Aug, 2009