Units of Energy and Specific Heat |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
You may remember from the metrics tutorial that distance, mass, and volume was based on water. The same is true with some units of energy. This liter bottle will help illustrate these units. If you took the bottle and threw it so that it took one second to make the throw and the bottle was traveling 1 meter per second speed as you let it go, one "joule" of energy was transferred to the bottle. (Joule is named after James Joule) The force that you exerted on the the kilogram of water to get that liter of water up to 1 meter per second is defined as one "newton" of force (Symbol is N). Energy is often calculated as force times distance. So in this case, one newton of force times one meter is called either newton·meter or one joule. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A joule also is related to electricity. One watt (about the power or a penlight) is consuming one joule per second. A watt (1 joule per second) is a measurement of power. Power is a certain amount of energy produced or consumed per unit of time. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A 15 watt light bulb therefore consumes 15 joules per second. That means it could accelerate 15 liters (about 4 gallons) of water up to 1 meter per second every second. Therefore in 60 seconds those 4 gallons of water will be traveling at 60 meters per second (122 miles per hour). So even a dim 15 watt bulb is consuming a lot of energy. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Another unit of energy based on water is the calorie. A calorie is defined as the amount of energy needed to raise 1 gram of water 1 degree Celsius. If it is a kilogram of water (1 liter), they call that a kilocalorie or a food calorie. In this example. we have a kilogram of water. That would take 1,000 calories to raise it 1 degree Celsius. If going from room temperature (20°C) up to near boiling (90°C), that's a 70 degree increase and therefore 70 x 1000 calories, or 70,000 calories to heat it. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Again, food calories are actually 1000 calories. This hamburger is said to be 1,000 calories, but it's actually 1,000,000 calories. Food calories are supposed to be written with a capital "C". So the hamburger is 1,000 Calories or 1,000,000 calories. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
When buying heaters, air conditioners, and barbeque grills, you often see it rated in BTU. That stands for British Thermal Units. This is similar to calories because it is based on the energy to heat water. But instead of metric units, it uses English units. A BTU is the energy needed to raise one pound of water 1 degree Fahrenheit. A pound is 454 grams of water and a Fahrenheit degree is 5/9 the size of a Celsius degree. So that means one BTU equals 454x5/9 or 252 calories. Often they rate these items in BTU but they actually mean BTU per hour, which is the rate of heating or cooling. This grill was listed as 48,000 BTU grill. That means it puts out 48,000 BTU of energy per hour. So it could raise the temperature of 1,000 lbs of water 48°F each hour. That's a lot of heating. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Another energy unit that we are all familiar with is the kilowatt·hour, which is how the electric companies charge us for electrical energy. You just learned that a watt is 1 joule per second. A kilowatt therefore is 1000 joules per second. Kilowatt·hour is a kilowatt of power being used for one hour. These are multiplied. That shows that 1 kilowatt hour is 3.6 million joules.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specific Heat |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The definition of a calorie as the energy to raise one gram of water one degree Celsius leads us to a property of water known as "Specific Heat". That property says that water requires 1 calorie for each gram of water present and each degree Celsius that those grams of water heat up. Other materials require a different amount of calories to heat up. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For example, the specific heat of gold is over 30 times smaller than that of water. In other words, a kilogram of gold will go from 20°C to 90°C, while water will only go from 20°C to 22°C when they both are heated equally. The specific heat of gold is 0.031 calories per gram per degree Celsius (0.031cal/g·°C). Why such a big difference? (See next paragraph( |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
It has to do with the heat being stored as kinetic energy (atoms and molecule moving faster) and energy being stored as potential energy (plus and minus charges being separated). You know that water is polar with + and - ends. As water heats up the molecules move away from this aligned arrangement where the + and - charges are close to each other. Having the charges farther away stores more potential energy. It's likes streching a rubber band. There's energy there as they snap back into their more stable (lower energy) alignment position. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Each metal and each material have a different rate of heating. Here we see that gold heats up 7 times faster than aluminum. That means that everything has their own specific heat (also called heat capacity). Aluminum's specific heat is 0.216 cal/g·°C, which is about 7 times more than that of gold (0.031 cal/g·°C). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There was an episode of Mission Impossible TV show in the 70's that utilized that fact that gold heats up so quickly compared to other materials. They drilled a hole in the bottom of a vault and inserted an electric heat rod. The gold in the vault heated up quickly. So it melted and ran out the hole in the bottom of the vault before any of the paper money or other coins got too hot. I'm not sure that would really work, but the low specific heat of gold makes it possible. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
One way to determine the specific heat of a substance is to heat it along side an equal mass of water. If the water heated up 8 degrees and the substance heated up 1 degree, then that substance has a specific heat of 1/8 of that of water. So its specific heat would be 0.125cal/g·°C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A more common approach to find the specific heat of a substance (like metals) is to heat that substance and then put it into a known amount of water. The blacksmith may have been one of the first people to recognize this. They often drop various metals into a bucket of water to cool the metal. They undoubtedly noticed that the water would heat up. They knew the heavier the piece of metal, the more the water would heat up. They may have noticed that different metals of equal weight would not heat up the water to the same temperature. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As we would suspect a hot iron horseshoe dropped into this water will heat up the water at the same time as cooling off the horseshoe. Also, in a minute or so, the horseshoe and water will be the same temperature. By knowing the mass of the horseshoe, the mass of the water, plus the beginning temperatures of the water and horseshoe, along with the final temperature of the water, we can figure out the specific heat of iron. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The trick to figuring this out is to recognize that the energy lost by the horseshoe will be the energy gained by the water. In other words the calories lost is equal to the calories gained. Specific heat is calories per gram per degree Celsius. That means if we multiply by grams and degrees Celsius, those units cancel and we are left with just calories (energy) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Let's say this horseshoe weighed 449 grams and was 455°C before dropping into the water. There were 2.00 liters (2,000g) of water, which started out at 24°C and ended up at 34.2°C. What is the specific heat of iron? Again, we set up an equation that shows the energy lost by the iron equals the energy gained by the water. Notice in the spreadsheet below that the one °C in the denominator cancel both of the °C in the numerator because after those in the numerator are subtracted, there's only one °C left. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In row 5, the calculations in row 2 were done and the results were written. Notice the negative sign in front of the loss of heat from the iron. That negative sign will cancel the negative sign when 455°C is subtracted from 34.2°C.
Here we get the specific heat of the iron in the horseshoe as 0.108 calories per g per °C. If this is entered in a spreadsheet, you can change any of the values in row 2 and the specific heat will automatically be calculated n I8. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Quiz on Energy Units and Specific Heat |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
It’s February and you want to heat up your pool. It is currently 50°F (10°C) and you want it raised to 80°F (27°C). Using an electric heater, how much will it cost if 1 kilowatt-hour is 10 cents? The pool is 7.0 meters long, 5.0 meters wide and 2.0 meters deep. (1 calorie = 1.1x10-6 kilowatt-hours). Specific heat uses calories, grams, and Celsius. We show a 17°C rise, so that's easy. We can solve for volume of the pool, but it ought to be in cubic centimeters because we know each cc of water is 1 gram. So we should change the meters into centimeters. The calories we calculate can be converted to kilowatt-hours using the given conversion. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Start with specific heat of water and multiply by Celsius and grams to get calories. Convert calories to kilowatt-hrs then get cost
Problem 2: What is the formula in T2? Problem 3: What units cancel out in the above calculations? Problem 4: On the day you decided to heat the pool the water temperature was 8°C instead of 10°C. What cell above needs changed and what is the new value? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This is me back in the 70's driving my electric CitiCar. It had eight 6-volt batteries. Each battery was rated as 200 amp-hours. That means 200 amps for one hour or 2 amps for 100 hours or any combination that multiplies out to be 200. The formula for power (watts) in these cases is amperage (200 amps) times voltage (6 volts). The answer is 1200 watts for one hour from each battery. That's written 1200 watt-hours of energy. Problem 5: Since a watt is 1 joule per second, how many joules of energy is stored in all these batteries? Problem 6: Also, if one horsepower is the same as 750 watts, how many minutes can I get from these batteries if I use a 10 horsepower electric motor? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Notice that G2 has "joule/sec". That makes the "sec" in the denominator. That will cancel with "sec" in I2. For the information about 10 horsepower, I will let you decide whether to put it in K6 or K7.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There is a true story about 4 people who were in a small plane flying over the Sierra Nevadas. The pilot wanted to impress the passengers by skimming over the top of a peak. Unfortunately, a down draft caused the plane to crash. 2 people were killed instantly and the pilot was badly injured. The surviving passenger had minor injuries, but she knew they would freeze at that altitude. It was close to night time so they decided to pour gasoline on some rocks and burn the gasoline to heat the rocks. The rocks were then rolled into the wreckage to provide heat during the night. The pilot died during the night due to injuries but the one passenger survived the cold and was able to hike down the mountain and eventually get rescued. The idea of heating rocks and bringing them into a closed space is a good one because a fire indoors can easily poison you with carbon monoxide. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
To get some hard facts about how much heat rocks can store, we find out their specific heat doing an experiment like the one with iron horseshoe. This is the data from the experiment: 854 grams of rocks were placed in boiling water (100°C). They were removed from the boiling water and immediately placed in 1.5 liters of water that began at 22°C. After the rocks warmed up the water, the final temperature of the rocks and water was 31°C. Plug these values into the spreadsheet below (yellow boxes). (Be sure to change 1.5 liters into grams)
Problem 7: What is your answer for I5? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
An electric blanket puts out about 100 watts of heat. Over 8 hours it puts out 100x8 or 800 watt-hours of energy. The common rock (quartz) has a specific heat of 0.19 cal/g·°C. Problem 10: How many pounds of quartz would have to be heated up to 450°C into order to give off the same about heat energy as the electric blanket if the rocks cool from 450°C (heated in a fire) to 37°C (body temp)? (These problems are difficult, but you just have to let dimensional analysis guide you. When I create problems like this, I don't know how to solve them initially. I just look at the units and decide what needs to get converted and let the dimensions guide the calculations. In the below spreadsheet I was getting some weird answers. I then realized Celsius units weren't canceling. I saw that the final and initial temps needed to be in the denominator for the Celsius in L2 to cancel. So, again, watching the units decides if multiplying or dividing is the right thing to do. Note: Subtracting 450°C from 37°C makes a negative number. Just treat it as a positive.)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 11: What cell cancels the hours in B2? Problem 12: What formula is put into U2? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Send your answers to Ken Costello at chm151@chemistryland.com |