<-CHM151 home page
Chapter 4 Textbook Readings and Problems
For all editions read the sections labeled: Acid-Base Titration Neutralization Analysis |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For all editions read the sections labeled: Oxidation-Reduction Reactions Balancing Oxidation-Reduction Reactions |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The below problems are taken from the 8th edition. You don't need the 8th edition because I've got the problems reproduced here. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 36: Some of these are dilution problems. Remember the strategy is to start with the known volume and concentration, which are 1.00L and 0.50 M (moles per liter). The spreadsheet below will help you set it up. As usual, when you see M (molarity), change that to moles per liter. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The multiplication of liters times moles/liter naturally makes moles. The concentrated solutions are also in moles per liter. Since the problem implies that they want to know the liters or milliliters needed of the concentrated solutions, we need the answer in liters or milliliters. After we get moles then you just make the concentrated moles per liters inverted to cancel moles and get liters. For (c) and (e), you use the grams per mole (molar mass) to get grams needed to make the desired solution.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 72: This problem also lends itself to a spreadsheet format because there's repitition. As usual when you see volume and concentration (molarity in this case), you should always think about multiplying to find the moles or grams present. Here we are totaling H+ ion and OH- ions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As usual, molarity (M) is written as moles per liter (moles over liters)
Problem 3: What formula goes into H9? Problem 4: What formula goes into K15? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 82: All of these problems depend on you knowing that certain atoms when bonding have a set oxidation number. For example, oxygen is always -2 unless bonded with itself in a compound then it is -1. Hydrogen is always +1. Chlorine and other halogens are alway -1. Alkali metals (column 1) are always +1, Alkaline earth metals are always +2. Some elements will vary so you have to first account for the ones that don't vary and then whatever charge is left for balancing is your element that varies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
82a. SrCr2O7. For strontium dichromate first realize that strontium (Sr) is an alkaline earth metal (column 2) so it has a +2 oxidation number. The 7 oxygen atoms have -2 oxidation number each so that's -14 total. The oxidation number of the two chromium atoms have to make the -14 and +2 add up to zero. -14 and +2 add up to -12, so we need the two chromium atoms to have a total of +12. You can figure what just one chromium atom has. 82b. CuCl2. This one is easy. Chlorine is always -1. You can figure out what copper has to be. 82c. O2. Elements not bonded to a different element always has an oxidation number of 0. 82d. H2O2. This is easy to see with written the way they connect, which is HO-OH. Now we see that oxygen has a bond to another oxygen. That's when oxygen has an oxidation of -1 instead of -2. You know what the oxidation of hydrogen is. 82e. MgCO3 (magnesium carbonate). These oxygens are all bonded to the carbon atom so these 3 oxygen atoms are all -2 oxidation number each. Magnesium is an alkaline earth metal so it is always +2. So add up the 3 oxygen atoms and add it to the positive oxidation number of magnesium and you will find out what carbon has to be to make the total zero. 82f. Ag. Same rule as (c). 82g. PbSO3. This one is a little tough. Sulfur can have a negative or positive oxidation number (lose or gain electrons) depending on what it combines with. The tip here is that SO3 combined with a metal indicates the SO3 is a polyatomic ion, with 3 oxygen atoms attached to one sulfur atom. This is sulfite (SO3)2-, which has a negative 2 charge. If sulfite has a -2 charge, then lead (Pb) must have a +2 charge and therefore a +2 oxidatin number. These oxygen atoms have -2 each, so that's -6 for the 3 oxygen atoms. So if the oxygen atoms account for -6 and Pb accounts for +2, what must sulfur's oxidation be for the charge (and oxidation numbers) to add up to zero? 82h. PbO2. This one is easy. You know what oxygen normally is so what must the Pb be in this compound (It's not the same as Pb in the above problem). 82i. Na2C2O4. Note that these oxygen atoms are bonded to carbon and there's no oxygen to oxygen bonds. So these oxygen atoms are all -2 oxidation number. Sodium (Na) is an alkali metal so it's alway +1. So when you add these 4 oxygen atom's oxidation numbers to the two sodium atom's oxidation numbers you will get a number that carbon atoms must have to cancel. 82j. CO2. This one is easy. It's like (h). 82k. (NH4)2Ce(SO4)3. This one is big and ugly. It's good to recognize the polyatomic ions of NH4+ (ammonium) and SO42- (sulfate). NH4+ is a +1. Since hydrogen is +1 that totals +4 for the hydrogen atoms. What does nitrogen have to be to reduce the +4 down to +1? Sulfate is -2. Since each oxygen is -2, they account for -8. What does sulfur have to be if it can take -8 and turn it into -2? Cerium (Ce) is fairly easy. You have 2 NH4+ of +1 each (+2 total) and 3 sulfates at -2 each (-6 total). So what does Ce have to be in order for the +2 and the -6 to add up to zero? 82L. Cr2O3. This one is easy. Just note that all oxygen atoms attach to chromium and not to another oxygen. So all oxygen atoms are -2. So what does that force chromium (Cr) to be? |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 84: This problem draws upon what you learned from the previous problem. You start off by figuring out the oxidation numbers of each atom. If the oxidation number is different on one side versus the other, then electrons were either lost or gained by that atom. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
84a. CH4(g) + H2O(g)--> CO(g)+ 3H2(g) This chemical reaction is a little unsual in the fact that water is being split and pure hydrogen is being formed. That happens when reacting with a reactive metal like pure sodium or potassium but not methane. This reaction only happens at very high temperatures. This reaction is used to create hydrogen gas that is then used to make ammonia (NH3) which is used to make fertilizer. Now on to the task for seeing if oxidation occurred (a loss of electrons) or reduction occurred (a gain of electrons which therefore reduced any positive charge). 84b. 2AgNO3(aq) + Cu(s) --> Cu(NO3)2(aq) + 2Ag(s) AgNO3 [It helps to recognize that NO3 is the nitrate ion, which is -1. So that makes Ag +1. We don't have to find the oxidation number of nitrogen and oxygen because in the products the NO3- (nitrate ion) is still intact and therefore the same -1 charge. So no electrons got gained or lost regarding the nitrate ion.] 84c. Zn(s) + 2HCl(aq) --> ZnCl2(aq) + H2(g) [This one is not too difficult. See if you can identify the oxidizing agent (same as species being reduced) and the reducing agent (same as the species being oxidized). 84d. 2H+(aq) + 2CrO42-(aq) --> Cr2O72-(aq) + H2O(l) [This one is bit difficult so I will give some hints on it. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 89. This problem used 32.0 grams of sugar, but instead of that amount, use a gram amount that equals the atomic number of your elemental code name. For example, if your name was sulfur, you would use 16.0 grams. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Problem 132. This problem is like the ones I gave in the Elemental Analysis tutorial and quiz. Apparently BARF is a compound that lets us create polyethylene and polypropylene, the two most common plastics. Part b lets us calculate the molar mass of BARF so we can gets its actual molecular formula. Of course we could just check the Internet for it. I will use a spreadsheet similar to what was used in the Elemental analysis tutorial. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most calculations are done but study how they were done. You should be able to write the empirical formula easily.
Finish calculations to find molar mass and then determine molecular formula.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Send answers to Ken Costello at chm151@chemistryland.com. Use a subject line of Chapter 4 book. |